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There is growing practical and theoretical interest in developing accurate macro-

scopic modelling for flows arising in chemical or physical vapor transport (VT) crys-

tal growth experiments, including those conducted in reduced gravity environments.

An example has been given by Debe et al., l who reported on experiments performed

aboard the Space Shuttle flight in 1985. The authors used physical vapor transport

to grow oriented metal-organic thin films of copper pthalocyanine (CuPc) on epi-

taxially active substrates sealed within non-isothermal ampoules. This particular

process is characterized by a fairly low operating pressure (in the Tort range) and

very steep gradients of temperature and concentration predominantly in the axial

direction (normal to the surfaces of evaporation and deposition). Typical operat-

ing conditions and preliminary theoretical investigations regarding the CuPc system

have been presented by Rosner and Keyes. 2 It is noteworthy that, according to the

measurements of Debe et at., l temperature gradients can reach values as high as 75

K/cm (corresponding to an O(10 -3 fractional temperature difference over one mean-

free-path) in the vicinity of the substrate. Rosner 3 first pointed out that, whereas

Stefan and buoyancy-driven flows were negligible under the conditions employed,

previously neglected rarefied gas dynamics phenomena become rather important

sources of convection. In particular, the combination of rarefaction and strong gra-

dients of temperature (and/or concentration) tangential to the side-walls of the

ampoule induces convective flows known as thermal (and concentration) "creep"

respectively, tIis order-of-magnitude estimates revealed that thermal creep effects

can be non-negligible even at normal gravitational levels.

On the macroscopic level and under the conditions mentioned above, the bulk

fluid mechanics can be adequately described by the familiar macroscopic eq'uations

as long as the boundary conditions are modified to account for the integrated effect of

kinetic (Knudsen 9) boundary layers adjacent to solid boundaries. For example, the

most general boundary condition for velocity at a simple gas/solid interface reads4:

<ov,v=v.+ on 7 (1)
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where v, vw refer to the fluid and wall velocity respectively, subscript t denotes the

component in the tangent plane, n is the unit vector in the direction locally normal

to the surface and x is a general position vector. The indicated coefficients _,.; are

lengths of the order of magnitude of the gas molecule mean-free-path and depend

on the details of the intermolecular and the molecule/surface collision processes.

Their values are obtained by solution of the Boltzmann equation or models thereof

for idealized geometries. Equation (1) simply states that a velocity slip v - vw

is associated with a gradient of tangential velocity in the normal direction and a

gradient of temperature parallel to the boundary, the latter contribution referred to

as thermal creep. Similarly, for an isothermal gas mixture :

v - v,_ = ¢-_n + aDn \ Ox n-_n "
(2)

Here, Dn is the binary diffusion coefficient and xl is the species 1 mole fraction, while

the coefficient a is dimensionless. In analogy to eq. (1), the second contribution is

called concentration creep.

Motivated by the growing importance of these phenomena, we have embarked

on a series of computational studies to elucidate these fundamental creep-induced

effects for a rarefied gas in simple, two-dimensional confined geometries. However,

unlike previous related studies, 5'6 we resort to a microscopic description of the gas,

mathematically expressed by the Boltzmann integro-differential equation. We em-

ploy the direct simulation Monte Carlo (DSMC) method of Bird, 7 the theoretical

foundations and several practical applications of which can be found in reference

7. In the case of thermally induced flows, the no-time counter method of Bird T is

used, as implemented for a hard-sphere gas. The scheme has been also extended

to account for realistic molecular interaction models, an extension necessary if the

diffusion physics underlying concentration creep are to be captured.

The results reported herein (see Ref. 4,8,10 for details) pertain to a two-dimen-

sional cartesian cavity, with length L in the x-direction, height H in the y-direction

and an aspect ratio a = L/H, here taken to be unity. The systems studied consist

approximately of a total of 10 5 computational particles, corresponding to an average

of several tens of particles in each cell since the average number of computational

particles per cell Nc is a simulation parameter which can seriously affect the solution

accuracy and associated cost. In addition, an increased value of Arc tends to alleviate

possible disparities due to slightly different nonequilibrium collision rate expressions

reported in the literature T and obviously represents the flow physics more closely.

It is emphasized that axial gradients of temperature and concentration are imposed

via appropriate microscopic boundary conditions but no creep velocity is specified

along the side-walls as done in macroscopic formulations. Therefore, creep velocities

emerge as the problem solution without specifying them a priori. Symmetry of the

computational domain and the imposed boundary conditions allow for a reduction

642



of computational cost by a factor of two by simply imposing a symmetry boundary

condition at the plane y = H/2. This is satisfied by requiring specular reflection for

molecules 'impinging' upon this plane. Further details about the implementation

can be found in Papadopoulos. 8

Figure 1 depicts the velocity vector field together with the accompanying stream-

tracer paths computed by our DSMC code for the specific choice of parameters

AT�To = 0.66, To = 600 K and KnT = 5.10 -2. The reference velocity urn/ chosen

is computed by means of one-dimensional, linearized theory for a hard-sphere gas,

based on the imposed tangential temperature gradient and other conditions. In fig-

ure 2 we show the computed flow field as induced by concentration creep for an Ar/He

binary mixture. Spatial discretization is Ax = 0.3 in mean-free-path units. Other

relevant parameters take the values Kn = 2.3.10 -2, Knc = 4.8.10 -2. Sufficiently

far from the end-walls, concentration creep velocity scales increase with decreasing

heavy species mole fraction xl, in agreement with predictions of one-dimensional

theory.

Straightforward order-of-magnitude estimates show that, for comparable gradi-

ents and fixed Prandtl number (Pr _ 2/3), the ratio of thermal to concentration

creep scales with the mixture Schmidt number Sc - v/D12. For typical operating

conditions in CuPc/rare gas mixture systems, Rosner & Keyes 2 estimated Sc _ 3.7;

thus, concentration creep is expected to be less important in these systems. Since

thermal creep and isothermal concentration creep flows have been investigated pre-

viously on an individual basis, it seems reasonable to follow up with an investigation

on their combined effect as a further step towards actual complex systems. Other fu-

ture plans include the development of a novel computational scheme that will enable

calculating fine details of kinetic boundary layer structure. In addition, we are cur-

rently assessing the feasibility of various schemes to study these interesting effects in

higher density systems. Our long-term goal is to contribute a fairly comprehensive

study of creep phenomena in enclosures used in actual crystal growth experiments.

We believe we have demonstrated the value of a microscopic approach in revealing

the complex nature of microgravity flows within PVT ampoules. One of our main

objectives is to guide the implementation of computationally efficient, yet physically

realistic, macroscopic descriptions of such flows, to anticipate their consequences in

crystal growth ampoule experiments. Indeed, microgravity offers a unique environ-

ment to study the fundamental and practical aspects of these phenomena without

the obscuring effects of gravity.
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Figure 1: DSMC-calculated gas flow field due to thermal creep in a non-isothermal

enclosure with KnT = 5.10 -2, To = 600 K and AT/Tb = 0.66. A linear variation of

wall temperature is imposed along the y" = 0 plane whereas x" = 0, x" = 1 represent

isothermal walls kept at temperatures 7'1, T2 respectively. The y" = 1/2 plane is

a symmetry plane (see text for details). The thermal creep velocity predicted by

one-dimensional, linearized theory for this specific set of parameters has been used

as a reference velocity (urn/). Lower plot shows corresponding streamtraces.
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Figure 2: DSMC-calculated flow field induced by concentration creep for an Ar/He

binary mixture. Relevant parameters take the values Ax = 0.3, Kn = 2.3- 10 -_,

Kn_ = 4.8.10 -_. Sufficiently far from the end-walls, concentration creep veloc-

ity scales increase with decreasing heavy species mole fraction x_, as predicted by

existing one-dimensional, linearized theories.
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